Regelung von Schaltnetzteilen

Die Ausgangsspannung von Schaltnetzteilen wird mittels einer geschlossenen Regelschleife konstant gehalten. Der Wert der Ausgangsspannung (Istwert) wird mit einer Referenzspannung (Sollwert) verglichen. Die Differenz zwischen Ist- und Sollwert steuert, je nach Vorzeichen, das Tastverhältnis der Transistoransteuerung. Der Regelkreis hat dabei die Aufgabe Netzschwankungen sowie Änderungen des Laststromes auszuregeln. Man nennt dies **Netzausregelung** und **Lastausregelung** (englisch: Line regulation, Load regulation).

Man unterscheidet zwei Regelverfahren: Die sogenannte *voltage-mode-* und die *current-mode-*Regelung. Das *voltage-mode-*Verfahren kann hierbei als "traditionelle" Schaltnetzteilregelung angesehen werden. Es ist heutzutage von der *current-mode* Regelung fast vollständig verdrängt. Moderne Schaltregler-ICs sind fast ausschließlich *current-mode* Regler.

Beide Regler werden im Folgenden am Beispiel einer Regelung für einen Aufwärtswandler erklärt.

Voltage-mode-Regelung:

Abbildung 4.1: voltage-mode-Regler für einen Aufwärtswandler

Die Ausgangsspannung U_a wird über den Spannungsteiler R_1, R_2 mit der Referenzspannung U_{ref} verglichen und über den PI-Regler verstärkt. Ein Pulsweitenmodulator (PWM) wandelt die Ausgangsspannung des PI-Reglers U_2 in eine pulsweitenmodulierte Spannung t_1/T . Der Ausgang des Pulsweitenmodulators steuert den Transistor (siehe auch Kapitel 1.2: "Aufwärtswandler").

Regelmechanismus: Ist die Ausgangsspannung U_a zu klein, ist U_a' kleiner als die Referenzspannung U_{ref} . Die Ausgangsspannung des PI-Reglers U_2 läuft infolge dessen hoch. Dadurch wird das Tastverhältnis t_1/T ebenfalls größer und die Ausgangsspannung des Aufwärtswandlers wird größer, und zwar genau solange, bis $U_a = U_{ref}$.

Current-mode-Regelung:

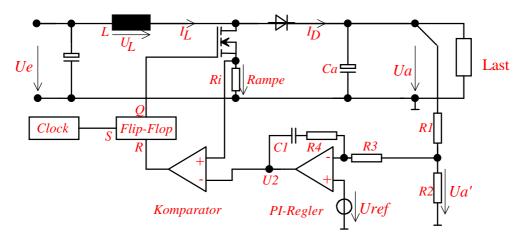


Abbildung 4.2: current-mode-Regler für einen Aufwärtswandler

Die Ausgangsspannung U_a wird über den Spannungsteiler R_1, R_2 mit der Referenzspannung U_{ref} verglichen und über den PI-Regler verstärkt. Die Spannung U_2 am Ausgang des PI-Reglers wird mit der rampenförmigen Spannung an dem Stommesswiderstand R_i verglichen. Der Ausgang des Komparators setzt ein RS-Flip-Flop zurück und schaltet damit den Transistor aus. Eingeschaltet wird der Transistor von der positiven Flanke des Taktsignals (Clock), ausgeschaltet wird der Transistor, wenn die Rampenspannung an R_i die Spannung U_2 erreicht.

Regelmechanismus: Ist die Ausgangsspannung U_a zu klein, ist U_a' kleiner als die Referenzspannung U_{ref} . Die Ausgangsspannung des PI-Reglers U_2 läuft infolge dessen hoch. Die Spannung U_2 bestimmt, bis zu welchem Wert der Strom durch R_i und damit auch der Drosselstrom I_L ansteigt, bevor der Transistor abgeschaltet wird. Läuft U_2 hoch, weil U_a' kleiner als U_{ref} ist, so wird auch der Drosselstrom größer, und zwar solange bis U_a' genau gleich der Referenzspannung ist.

Vergleich: voltage-mode vs. current-mode-Regelung:

Beim *current mode*-Regler regelt der PI-Regler praktisch verzugslos den Drosselstrom und damit näherungsweise auch den Ladestrom des Ausgangskondensators. Die Regelstrecke besteht nur noch aus dem Kondensator C_a und dem Lastwiderstand R_L mit der Eingangsgröße I_D und der Ausgangsgröße U_a . Die Regelstrecke hat P_{T1} -Verhalten und Ausgleichsvorgänge beschreiben eine e-Funktion.

Beim *voltage-mode*-Regler wird das Tastverhältnist t_1/T geregelt, d.h. die Spannung über L. Diese ändert erst den Drosselstrom und dann die Ausgangsspannung. In diesem Falle hat die Regelstrecke P_{T2} -Verhalten und Ausgleichsvorgänge beschreiben einen nur schwach bedämpften Einschwingvorgang 2.Ordnung, d.h. die Ausgangsspannung strebt sinusfömig dem stationären Wert zu.

Der *current-mode*-Regler zeigt damit deutlich günstigeres Regelverhalten. Dies ist der Grund, warum heutzutage fast ausschließlich diese Regler eingesetzt werden.

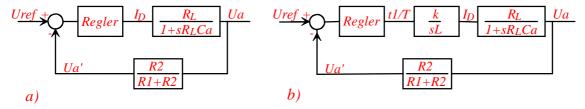


Abbildung 4.3: Vereinfachtes Blockschaltbild für a) current-mode- und b) voltage-mode-Regelung

Dimensionierung des PI-Reglers:

Der PI-Regler neigt zum Schwingen, wenn der Kondensator C_1 zu klein und der Widerstand R_4 zu groß gewählt werden. Daher wählt man zunächst C_1 groß (bei handelsüblichen Regel-ICs für Schaltnetzteile ca 1uF Folienkondensator). R_4 wählt man so, daß die Grenzfrequenz des PI-Reglers deutlich unterhalb der Resonanzfrequenz von L und C_a liegt:

$$\frac{1}{2\pi\sqrt{LC_a}} \ge 10\frac{1}{2\pi R_4 C_1}$$

Nun sollte der Regler stabil arbeiten (wenn nicht, können auch interne Störungen oder ungeeigneter Aufbau die Ursache sein). Um den Regler zu verbessern kann nun C_1 schrittweise verkleinert werden, bei gleichzeitiger Vergrößerung von R_4 . Wenn der Kreis instabil wird, d.h. schwingt, den Wert des Kondensators wieder um den Faktor 10 vergrößern und R_4 um den Faktor 10 verkleinern. Auf diese Weise erhält man einen stabilen Regler mit, für die meisten Fälle, hinreichender Regeldynamik.

HINWEIS:

Bei vielen handelsüblichen ICs ist der Operationsverstärker (er heißt dort: Error Amplifier) ein sogenannter Transconductanz-Verstärker. Dieser liefert einen Ausgangsstrom (sehr hochohmiger Ausgang), der proportional der Eingangsdifferenz-Spannung ist. Die RC-Kombimation des PI-Reglers (R_4 und C_1) wird in diesem Fall zwischen dem Operationsverstärker-Ausgang und Masse angeschlossen.